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Leadership-class 
computing is 
increasingly used for 
Scientific Machine 
Learning and 
Artificial Intelligence

Scientific ML/AI workloads require either high 
metadata operation rates for datasets containing 
lots of small files, or high random read IOPS from 
large files
• Rates only grow as workloads are scaled and 

application demands increase

Lustre, GPFS, and other Parallel File Systems were 
designed for large sequential reads and writes, not 
high-rate metadata or random reads
• Random read patterns lack temporal and 

spatial locality, and are unlikely to benefit from 
existing PFS caching strategies in clients or 
servers
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OLCF has used node-local storage to enable scientific AI/ML

Summit and Frontier both utilized node-local NVMe storage 

• NVMe provides high metadata and random read performance

• Small capacity and independent namespace per node requires additional 
data management work

§ Data sharding can negatively impact convergence and model quality

• Node-local performance scales with node count, limiting storage 
performance for smaller AI/ML jobs

Hypothesis: Isolating the AI/ML storage from the Modeling and 
Simulation storage may provide better performance to both workloads

• A shared AI/ML storage system eliminates usability and capacity limitations 
of node-local storage while still improving performance versus the PFS.

• As MTBF decreases with increased leadership-class HPC system size, 
prioritizing PFS I/O for mod/sim workloads is important.
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Our AI-Optimized Storage (AOS) evaluation seeks to 
understand storage system performance for Scientific ML/AI

400 Gbps NDR Infiniband Network

VAST Storage (Release 5.2.0-sp10-1631657)
• 8 CNodes (2 CBox), each with 100Gbps NIC
• 2 DBox, each with 8 SCM and 22 15.3 TB SSD

DAOS Storage (v2.6.2)
• 8 servers, each with dual Intel Xeon Gold 6338 (32-

core), 512 GB RAM, two 200Gbps Mellanox ConnectX-
7, and ten 3.8 TB NVMe

• DAOS Config: 16 engines, 320 targets, MD-on-SSD

HPC - Quokka cluster
• 16 nodes, each with dual Intel Xeon Gold 5418Y (24-

core), 256 GB RAM, 200Gpbs Mellanox ConnectX-7
• Slurm 22.05, OpenMPI 4.17, DAOS CLI version 2.6.2, 

libdaos v2.7.0

elbencho v3.0-5 (https://github.com/breuner/elbencho)
• distributed (non-MPI) and threaded

• configured for random reads of entire dataset per 
epoch/iteration (x4 iterations)

§ small files dataset: whole-file reads of 32KiB 
and 1MiB files

§ large file dataset: block-aligned reads using 
64MiB and 512MiB blocks

Deep Learning I/O Benchmark 
(https://github.com/argonne-lcf/dlio_benchmark)

• base software used by MLPerf Storage Benchmark
• models: resnet50, cosmoflow

DISCLAIMER: All performance results are the result of 
initial single run experiments. Draw conclusions at your 
own risk.

Testbed Storage Systems and HPC Benchmark Software

https://github.com/breuner/elbencho
https://github.com/argonne-lcf/dlio_benchmark
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AI/ML Reads of Small File Datasets - 32KiB Files - First Epoch

~2.6GiB/sec
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AI/ML Reads of Small File Datasets - 32KiB Files - Later Epochs

~3GiB/sec
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AI/ML Reads of Small File Datasets - 1MiB Files - First Epoch

~78GiB/sec
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AI/ML Reads of Small File Datasets - 1MiB Files - Later Epochs

~90GiB/sec
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AI/ML Reads of Large File Datasets - First Epoch
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AI/ML Reads of Large File Datasets - Later Epochs
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Deep Learning I/O (DLIO) Benchmark Results

v Resnet50 Training Dataset
§ 137 GiB
§ 1,024 137MiB files
§ 1,251 samples per file
§ 5 epochs

v Cosmoflow Training Dataset
§ 1.4 TiB
§ 524,288 2.7MiB files
§ 1 sample per file
§ 5 epochs



12

Early results support DAOS suitability for 
Scientific ML/AI

M o r e  t o  C o m e !  P a p e r ,  A O S  E v a l u a t i o n  S o f t w a r e
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